
Final Exam Formal Languages, Computability and Complexity

You can answer in any order that you like, but indicate the question numbers in your answers. The
questions are roughly sorted by difficulty except for F questions, which are somewhat harder.

1 Universal Languages and Time Bounds

Place in as low a complexity class as you can. For this question, M denotes an arbitrary Turing machine.
Which languages are complete for their classes? Briefly justify your answers.

(a) L := {(M,x) : M(x) halts}
RE (recursively enumerable): run M on x using a universal Turing machine; accept iff it accepts. We
did not define RE-completeness. But under a natural definition this language is RE-complete under
many-one (and poly-time) reductions. Suppose L′ = L(M ′) ∈ RE for some Turing machine M ′. We
can decide if an instance x is in L′ or not by mapping it to an instance M∗, where M∗ operates as
follows. If M ′ loops, M∗ loops. If M ′ accepts, M∗ accepts. If M ′ rejects, M∗ loops.

(b) L := {M : ∃x M(x) halts}
RE: run M in parallel on all inputs; accept iff M accepts at some point. (Recall that to run a machine
“in parallel” on all inputs at the i-th step, we run i steps of M for the first i inputs.) This language is
also RE-complete, with a reduction that is similar to the one given above. Suppose L′ = L(M ′) ∈ RE
for some Turing machine M ′. We can decide if x is in L′ or not by mapping it to an instance M∗[x],
where M∗[x] has x hardwired in and operates as follows. If M ′(x) loops, M∗[x] loops. If M ′(x)
accepts, M∗[x] accepts. If M ′(x) rejects, M∗[x] loops.

(c) L := {(M,x, t) : M(x) halts within time t}
EXP-complete: run M on x for t steps; accept iff M accepts. The number of steps is at most
exponential in the length of the input since t ≤ 2|(M,x,t)|. Every language L′ = L(M ′) ∈ EXP reduces
to L. Map an instance x for L′ to instance (M ′, x, t) for L, where t is an upper bound on the number
of steps that M ′(x) makes. Note this reduction runs in poly-time since the encoding of (M ′, x) as well
as (an upper bound) for t can be computed in poly time. We have that x ∈ L′ ⇐⇒ (M ′, x, t) ∈ L.

(d) L := {(M, t) : ∃x M(x) halts within time t}
NEXP-complete: L ∈ NEXP: consider the verifier V ((M, t), x) that given an instance (M, t) and x
runs M(x) for at most t steps and accepts iff M accepts. Algorithm V runs in time exponential in the
length of input (M, t) since t ≤ 2|(M,x,t)|. Every language L′ = L(V ′) ∈ NEXP reduces to L, where
V ′(z, x) is a verifier for L′ which runs in exponential time in |z|. Map an instance z for L′ to instance
(V ′(z, ·), t) for L, where t is an upper bound for the time complexity of V ′ on z. Note the reduction
is poly time since the encoding of V ′(z, ·) as well as an upper bound for t can be computed in poly
time. We have that z ∈ L′ ⇐⇒ ∃x V ′(z, x) = 1 ⇐⇒ ∃x (V ′(z, x), t) ∈ L.

(e) L := {(M, t) : ∀x M(x) halts within time t}
coNEXP-complete: The solution is similar to previous item. The only difference is that in a verifier-
based definition for coNEXP, we accept iff the verifier accepts for all x.

(f) L := {(M, 1t) : ∀x M(x) halts within time t}
coNP-complete: The solution is similar to previous item. The only difference is that the verifier now
runs in polynomial time in |z|.

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

2 Relations between Classes

Assume P = PSPACE. Now consider each of the following statements and say whether it is true, false, or
an open question. In case you say true or false, also give a short justification of your answer.

We use
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP ⊆ NEXP.

and the facts that NL (PSPACE and P (EXP.

(a) P = NP
Yes. We have that P ⊆ NP ⊆ PSPACE. It follows that if P = PSPACE then P = NP.

(b) NP = coNP
Yes. By (a), we have P = NP. Since P = coP, it follows that NP = coNP as well.

(c) P = L
No. Since L ⊆ NL (PSPACE, it follows that if P = PSPACE then L (P.

(d) NP = EXP
No. We know P (EXP. By (a) P = NP. Hence NP (EXP.

(e) NP = L
No. We have that P = NP = PSPACE. Since we know L (PSPACE, it follows that L (NP.

(f) NPSPACE = P
Yes. Since PSPACE = NPSPACE, it follows that NPSPACE = P.

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

3 Kleene Star

The Kleene star of a language L is the language

L? := {x1 · · ·xk : k ≥ 0 and x1, . . . , xk ∈ L} .

That is, L? consists of strings formed by concatenating a finite number of elements of L.

(a) Show that NP is closed under Kleene star.

Proof. In order to prove that L? ∈ NP, we have to build a verifier V ?(·, ·) for L? that runs in
polynomial time fL?(n). To do that, we can ask the prover to provide us a list of k tuples of form
(si, yi) such that:

• si is in the range 1..|x| and si < si+1;

• yi is the “proof” that x[(si−1 + 1)..si] ∈ L, where we assume s0 = 0.

• sk = |x|.
In this case, k can be any integer in the range 1..|x|, where |x| is equal to the size of the input string.
In the case we have an empty string, we don’t need any information from the prover and our verifier
can just say YES. Thus, the following program can verify the output of the prover is correct and that
the input x ∈ L?.

Program V ?(x, y′)
If x = ε then say YES
Check that y′ has the form [(s1, y1), . . . , (sk, yk)] and
k ∈ [0..|x|], si ∈ [0..|x|], si < si+1, and sk = |x|.
Check if V (x[1..s1], y1) = YES and V (x[s1..s2], y2) = YES
and · · · and V (x[sk−1..sk], yk) = YES.
If checks are true then say YES else say NO.

Now that we have constructed the verifier, it remains to prove that it runs in polynomial time. If the
input is the empty string, the verifier runs in a constant time. For any other inputs, we need at most
to verify |x| substrings, each of which takes polynomial time. Thus, the total running time fL?(n) is
also polynomial.

(b) Show that P is closed under Kleene star.

Proof. Let L ∈ P. Then, there is a Turing Machine M that decides L in polynomial time fL(n). In
order to prove that L? ∈ P, we need to construct a Turing Machine M? that decides L? in polynomial
time, say fL?(n). To do that, we will construct a matrix A of size (|x| + 1) × (|x| + 1), where |x| is
the size of the input string. For each element Ai,j , we have:

Ai,j =

{
1 if (i < j) and the substring x[i..(j − 1)] ∈ L;
0 otherwise.

We can see that the generated matrix A may be interpreted as the adjacency matrix of a graph with
|x|+1 nodes (where Ai,j = 0 means that there are no edges between nodes i and j and Ai,j = 1 means
that there is an edge between these nodes). Doing that, to find out if x ∈ L? is equivalent to find a path
from node 1 to node |x|+ 1 in the graph. For example, the fact that substrings x[2..5] and x[6..8] ∈ L
is equivalent to have edges (2,6) and (6,9), respectively, in the generated graph. Nevertheless, the
problem of finding a path in a graph can be solved using the reachability algorithm, which runs in
time (n2) for a graph with n nodes. Therefore, the following Turing Machine can decide L?:

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

Program M?(x)
If x = ε then accept and halt
Initialize matrix A with zeros
For i = 1 to |x|

For j = i to |x|
Run M(x[i..j])
If it accepts then
A[i, j + 1] = 1

Run the Reachability algorithm to check if there is a path
from node 1 to node |x|+ 1.

If there is a path then
accept and halt

else
reject and halt

To analyze the runtime of this machine, we can see that the initialization takes time O(|x|2). Besides
that, we have O(|x|2) operations due to both For commands, each of which takes at most fL(|x|) time.
In addition, the runtime due to the reachability algorithm is O(|x|2). Therefore, the total runtime for
the machine M? is a polynomial function of the size of the input.

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

4 PCP Variants

Determine which of the following variants of PCP are decidable:

(a) PCP over a unary alphabet.

Proof. This problem is easily decidable. If some tile has the same number of 1’s on the top and
bottom, there is a trivial match, so accept. If all tiles have more 1’s on the top than on the bottom,
or vice-versa, there cannot be a match, so reject. Otherwise, let t1 be a tile with a1 > 0 more 1’s on
the top than on the bottom and let t2 be a tile with a2 > 0 more 1’s on the bottom than on the top.
Choosing a2 of t1 tiles and a1 of t2 tiles yields an equal number of 1’s on both top and bottom and
hence a match; so accept in this case.

(b) PCP over a binary alphabet.

Proof. This problem is undecidable as we can use the binary alphabet to injectively encode PCP
instances over arbitrary alphabets. Given an instance of PCP over alphabet Σ = {a1, . . . , an}, one
can reduce it to an instance of PCP over the binary alphabet by applying the homomorphism h that
maps the symbol ai to string 10i. The crucial property about this mapping is that, for u, v ∈ Σ? we
have that u = v iff h(u) = h(v) (i.e., h is injective). Let P be an instance of PCP over Σ. Take h(P)
to be the PCP instance over the binary alphabet, where any string w appearing in any tile of P is
replaced by h(w). Given that u = v iff h(u) = h(v), we can conclude that P is in PCP iff h(P) is in
binary PCP. Since PCP over Σ is undecidable, so is PCP over {0, 1}.

F(c) PCP (over an arbitrary alphabet, as usual) but now the goal is determine whether or not there is an
infinite sequence i1, i2, . . . such that ti1ti2 · · · = bi1bi2 · · · , where {(ti, bi)}ni=1 is a finite set of tiles.

Proof. The proof of undecidability of PCP relies on a reduction between an encoding of a TM as a
PCP instance where the TM halts if and only if there exists a PCP solution. (The details are recalled
below.)
In this reduction an infinite titling can exist because: (1) one can repeat the (finite) tiling infinitely;
or (2) the machine does not halt and there is an infinite tiling. The only case in the reduction where
an infinite tiling does not exist is for TM that block (i.e. the TM to a state that is not a final state and
has no outgoing transition for the current symbol; which generally corresponds to rejecting states).
We can make a small modification to the reduction so that there is an infinite tiling iff the machine
does not terminate: we consider only TM that never block but can only terminate by accepting or
run infinitely and we insert a new symbol $ appearing in the top tiles corresponding to final states
(therefore blocking the tiling when the TM terminates).
The reduction to halting now is: run the infinite PCP decider; if it accepts (an infinite tiling exists),
then reject (the machine loops); if it rejects (no infinite tiling exits), then accept (machine terminates).

The (standard) PCP reduction The idea was to “force” the tiles to follow a TM computation. The
word shared between the top and bottom tiles will correspond to a computation history, i.e., it will be
a sequence of words uj = #w1 · · ·wkqiwk+1 · · ·wn with uj representing the state of the machine after
the j-th step. uj represents a tape with contents w1 · · ·wn and the current state qi of the TM being
on wk.
In order to make sure that uj+1 is a valid transition from uj , the bottom tiles will be one transition
behind, i.e., when b0 · · · bi represents u0 · · ·uj then t0 · · · ti represents u0 · · ·uj+1.
Our tiles are:

• copy the band state (i.e., t = a, b = a for tape symbol a);

• copy the separation between two steps of computation (t = b = #);

• for each transition (q, x)→ (R, q′z) (read x in state q, write z move right and go to state q′) we
have b = xqy that “reads” q and x and t = zy′q for each tape symbol y.

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

• for each transition (q, x)→ (R, q′z), we also have b = xq#, t = z q# that extends the tape with
the base tape symbol .

• for each transition (q, x) → (L, q′z) and each tape symbol a, we have b = xqa that “reads” x in
state q and t = qza that prints z and moves left (the a ensures we are not at the end of the tape).

• for each transition (q, x)→ (L, q′z), we have b = xq# that “reads” x in state q and t = qz# that
prints z and moves left except when z = (the base tape symbol) in which case the top tile is
t = q#. This transition makes sure that we only keep the “active” part of the tape (i.e. the part
after the head of the TM composed of an infinite repetition of).

• finally, for each final accepting state q we have b = q#, t = ε to terminate the tilling. This
termination only works with a tape that is completely erased but we can enforce that the TM
erases its tape before accepting.

This reduction works only if we add a first domino that is b = u0 and t = u0#u1. However nothing
ensures that this is the first domino that will be used (and if not t = a, b = a will be an infinite tiling).
To ensure that our first domino is really the first domino used, we modify all tiles to insert ? after
all characters in the top tiles and ? before all chars in the bottom tiles. Finally we add a ? at the
beginning of our first top tile and a ? to our final dominos (the (b = q#, t = ε) for q an accepting
state). This way the first tile that can be used is our first domino.

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

5 Randomization and Nondeterminism

A language L ∈ BP ·NP if there exists a polynomial-time deterministic Turing machine M such that

x ∈ L =⇒ Pr
r∈{0,1}m(n)

[
∃y ∈ {0, 1}k(n) M(x, y; r) = 1

]
≥ 2/3

x 6∈ L =⇒ Pr
r∈{0,1}m(n)

[
∃y ∈ {0, 1}k(n) M(x, y; r) = 1

]
≤ 1/3

where m(n), k(n) ≤ poly(n). A language L ∈ NP · BP if there exists a polynomial-time deterministic
Turing machine M such that

x ∈ L =⇒ ∃y ∈ {0, 1}k(n) Pr
r∈{0,1}m(n)

[M(x, y; r) = 1] ≥ 2/3

x 6∈ L =⇒ ∀y ∈ {0, 1}k(n) Pr
r∈{0,1}m(n)

[M(x, y; r) = 1] ≤ 1/3

where m(n), k(n) ≤ poly(n). Show that

NP ·BP ⊆ BP ·NP .

Idea of the proof. Let L = L(M) ∈ NP ·BP with M satisfying the conditions of BP ·NP. We consider a
machine Mp that takes (x, y) and p(|x|) sets of random coins (r1, . . . , rp(|x|)) for some polynomial p. Machine

Mp accepts (x, y) when the majority of the runs over coins (ri)1..p(|x|) are accepting. We will show that for

sufficiently large p, machine Mp satisfies the conditions of NP ·BP.

A new definition for NP ·BP. When L ∈ NP ·BP there exists a polynomial-time deterministic Turing
machine Mp such that:

x ∈ L =⇒ ∃y ∈ {0, 1}k(n) Pr
r∈{0,1}m(n)×p(n)

[
Mp(x, y; r) = 1

]
≥ 1− (2/3)1+2k(n)

x 6∈ L =⇒ ∀y ∈ {0, 1}k(n) Pr
r∈{0,1}m(n)×p(n)

[
Mp(x, y; r) = 1

]
≤ (1/3)1+2k(n)

This definition is indeed equivalent. The outputs (bi)i=1..p(|x|) of the p(|x|) runs of the machine are
independent and identically distributed. When x ∈ L we expect the mean of bi to be around 2/3. (Formally,
by the Chernoff bound, the sample mean will deviate from 2/3 with overwhelming probability; that is

Pr
r∈{0,1}m(n)×p(n)

[∣∣∣ 1

p(n)

∑
bi − 2/3

∣∣∣ ≥ ε · (2/3)

]
≤ e−

ε2

4
·(2/3)·p(n) .

If we set ε := 1/8 so that 2/3 − ε > 1/2, the majority will be the wrong answer with probability at most
e−p(n)/384. Hence we can set p(n) := 384 ln(3/2)(1 + 2k(n)). The case x 6∈ L is similar: we look at deviation
from 1/3, again setting ε := 1/8 so that 1/3 + ε < 1/2.)

Proof that Mp validates the BP ·NP condition when x ∈ L. By definition of NP ·BP there exists yx
such that

Pr
r∈{0,1}m(n)×p(n)

[M(x, yx; r) = 1] ≥ 1− (2/3)1+2k(n) ≥ 2/3 .

That is, at least 2/3 of the r are good for yx. Then

Pr
r∈{0,1}m(n)×p(n)

[∃y ∈ {0, 1}k(n) M(x, y; r) = 1] ≥ 2/3 ,

because yx ∈ {0, 1}k(n) and 2/3 of r will be good for this yx. (Note any p(n) ≥ 1 works here.)

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

Proof that Mp validates the BP ·NP condition when x 6∈ L. We have that for all y ∈ {0, 1}k(n)

Pr
r∈{0,1}m(n)×p(n)

[
Mp(x, y; r) = 1

]
≤ (1/3)1+2k(n) .

Therefore the number of (y, r) ∈ {0, 1}k(n) × {0, 1}m(n)×p(n) with Mp(x, y; r) = 1 is bounded by

2k(n)+m(n)×p(n)

32k(n)+1
=

2k(n)

3k(n)
× 2m(n)×p(n)

3k(n)+1
≤ 2m(n)×(n)

3k(n)+1
≤ 2m(n)×p(n)

2k(n)
× 1

3
.

Since there are at most 2p(n)×m(n) values for r and at most 2k(n) values for y, by pigeonhole there can exist
at most 2m(n)×p(n)/3 distinct r for which there is a y such that Mp(x, y; r) = 1; that is,

Pr
r∈{0,1}m(n)×p(n)

[
∃y ∈ {0, 1}k(n) Mp(x, y; r) = 1

]
≤ 1/3 .

In any case L ∈ BP ·NP is recognized by Mp and thus NP ·BP ⊆ BP ·NP.

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

6 Separation via Closure

For a language L ⊆ Σ? and a function f : Σ? −→ Σ?, let

Lf := {x ∈ Σ? : f(x) ∈ L} .

We say that a complexity class is closed under polynomial composition if for any L in the class and any
polynomial-time computable function f it is the case that language Lf is also in that class.

For a language A, let A] := {x0|x|
2−|x| : x ∈ A} be the language consisting of elements x of A appended

with |x|2 − |x| zeros.

(a) Show that NP is closed under composition.

Proof. If L ∈ NP then there is a verifier V (·, ·) for L that runs in polynomial time fL. To prove that
Lf ∈ NP, we have to build a verifier Vf (·, ·) that runs in polynomial time fLf

(n). To do that, we ask
the prover to provide us a “proof”, say y′, that f(x) ∈ L. Then, the following program can verify if
the output of the prover is correct.

Program Vf (x, y′)
Compute x′ = f(x)
Check if V (x′, y′) = YES
If check is true then say YES else say NO.

As f is polynomial time computable function, then there is a Turing Machine M and polynomial
function g(·) such that: (1) M(x) = f(x), and (2) M(x) halts in g(|x|) steps. Using the fact that
TIME(f(n)) ⊂ SPACE(f(n)), then we can say that |f(x)| ≤ g(|x|). Therefore, the input of the
verifier V (·, ·) in the program Vf (·, ·) has a size that is a polynomial function of the original input x.
As the verifier V (·, ·) runs in a polynomial time, then Vf (·, ·) also runs in a polynomial time.

(b) Show that if A ∈ SPACE(n2) then A] ∈ SPACE(n).

Proof. By assumption, there is an algorithm MA and a constant c such that, on any input x, algorithm
MA outputs if x ∈ A and 0 otherwise. Moreover, MA uses at most c|x|2 space on its work tapes. We
now design an algorithm MA] to decide A] in linear space.

Algorithm MA] takes an input y. It first computes m =
√
|y|, and rejects if this is not an integer

This takes poly(log(|y|)) space. Next it checks that the last m2 −m bits of y are zeros and rejects
if not. Now it lets x be the first m bits of y and outputs MA(x). The running time of MA] is
c|x|2 + poly(log(|y|)) +O(|y|). But this is O(|y|) because |x|2 = O(|y|). So A] ∈ SPACE(n).

(c) Show that SPACE(n) is not closed under composition.

Proof. To prove that SPACE(n) is not closed under composition, it’s sufficient to show that there
is an example in which this is not true. To do that, we can make use of the example of the previous
item of this problem, which we rewrite as A = {x ∈ Σ? : f(x) ∈ A]}. In this case, f(x) represents
the function that appends zeros to the original input string. As we have seen, A] ∈ SPACE(n) and
A ∈ SPACE(n2).

Using the Space Hierarchy Theorem, we can see that SPACE(n) 6= SPACE(n log n) ⊆ SPACE(n2).
Therefore, SPACE(n) is not closed under composition.

(d) Conclude that NP 6= SPACE(n).

Proof. In order for the two classes be equal, they should have the same properties. As we proved in
the first item of this problem that NP is closed under composition. However, as we also have proved
in the previous item of this problem, SPACE(n) is not closed under composition. Therefore, we
conclude that both classes are different.

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

7 NP-Completeness

CLIQUE-COVER is the following problem:

INPUT: A graph G = (V,E) and a positive integer K ≤ |V |;
QUESTION: Can the vertices of G be partitioned into k ≤ K disjoint sets V1, . . . , Vk such that for every
i = 1, . . . , k the subgraph induced by Vi is a complete graph?

Show that CLIQUE-COVER is NP-complete.

Proof. To show that CLIQUE COVER is NP-complete, we need to prove two things:

• CLIQUE COVER is in NP;

• A ≤p CLIQUE COVER for some A which is NP-complete.

In order to prove that CLIQUE COVER is in NP, we have to build a verifier V ?(·, ·) for CLIQUE COVER
that runs in polynomial time. To do so, we can ask the prover to provide us a partition of G into k ≤ K
disjoint sets V1, . . . , Vk such that for every i = 1, . . . , k, the subgraph induced by Vi is a complete graph.
Since the number of operations is polynomial and each operation runs in polynomial time, the total running
time is also polynomial.

For the second part, we will use COLORING for the reduction. Here we consider COLORING as equiva-
lent to k-COLORING, differing only in the aspect that k is an explicit input to the problem. More precisely,
we have to provide a function f that reduces COLORING to CLIQUE COVER in polynomial time. In
particular, this function has to map the original graph G and the input k to a new graph G′ and an integer
k′ such that (G; k) ∈ COLORING if and only if (G′; k′) ∈ CLIQUE COVER. This can be written as follows:

f : (G(V,E); k)→ (G′(V ′, E′); k′)

The idea for constructing the new graph G′ is to create a “reversed” graph of G, i.e., V ′ = V and
{u, v} ∈ E′ if and only if {u, v} 6∈ E. We map k into k′.

(G; k) ∈ COLORING =⇒ (G′; k′) ∈ CLIQUE COVER. If (G; k) ∈ COLORING, then there exists a
map c : V → {1, . . . , k} such that c(u) 6= c(v) for all edges {u, v} ∈ E. Let Vi be the subset of nodes u such
that c(u) = i. As we know that two nodes in G with the same color are not connected to each other, it
implies that all nodes in Vi are not connected to each other in G. So, when we consider the “reverse” graph
G′, all nodes in Vi must be fully connected. As we have at most k different colors, then so is the number of
subsets Vi. As one node cannot have more than one color, then all subsets Vi are disjoint. In addition, as
all nodes are mapped to at least one color, then the union of all subsets Vi is equal to V . Therefore, as k is
directly mapped to k′, we can conclude that (G′; k′) ∈ CLIQUE COVER.

(G′; k′) ∈ CLIQUE COVER =⇒ (G; k) ∈ COLORING. If (G′; k′) ∈ CLIQUE COVER, then there
exists a partition of the vertices of G′ into k′ ≤ |V | disjoint sets V1, . . . , Vk such that for every i = 1, . . . , k′

the subgraph induced by Vi is a complete graph. Let c be a mapping such that all nodes in Vi are mapped
to a color i in the original graph G. As we know that all the nodes in Vi are fully connected to each other
in G′, it implies that they are not connected to each other in G. As we know that all the subsets Vi are
disjoint, then each node v is mapped to only one color in G. Also, as we know that we have at most k′

subsets and that their union is equal to V , then all nodes are mapped to one color and we have at most k′

different colors. Therefore, as k is mapped directly to k′, we can conclude that G ∈ COLORING.

Final Exam 3 hours 25 January 2018

Final Exam Formal Languages, Computability and Complexity

8 Bonus Question: Sometimes Space = Time

Show that there exists a function T (n) ≥ n such that DTIME(T (n)) = DSPACE(T (n)).

Proof. We assume that the underlying languages are binary. Let

T (n) := maximum number of steps that an n2 state TM can make on the empty tape .

This is, T (n) is (closely related to) the busy-beaver function. Clearly, DTIME(T (n)) ⊆ DSPACE(T (n)).
For the converse inclusion, let L = L(M) ∈ DSPACE(T (n)). For x ∈ L, define M [x] to be the TM that
has x hardwired in and then runs M(x). Machine M [x] has at most c · |x| + |k| states (for some constant
c). For sufficiently large |x|, machine M [x] has at most |x|2 states and thus runs in time at most T (|x|).
Hence L ∈ DTIME(T (n)).

Final Exam 3 hours 25 January 2018

